Generalized iterations and primitive divisors
نویسندگان
چکیده
منابع مشابه
On Primitive Divisors
Abstract. We study primitive divisors of terms of the sequence Pn = n + b, for a fixed integer b which is not a negative square. It seems likely that the number of terms with a primitive divisor has a natural density. This seems to be a difficult problem. We survey some results about divisors of this sequence as well as provide upper and lower growth estimates for the number of terms which have...
متن کاملPrimitive Divisors in Arithmetic Dynamics
Let φ(z) ∈ Q(z) be a rational function of degree d ≥ 2 with φ(0) = 0 and such that φ does not vanish to order d at 0. Let α ∈ Q have infinite orbit under iteration of φ and write φ(α) = An/Bn as a fraction in lowest terms. We prove that for all but finitely many n ≥ 0, the numerator An has a primitive divisor, i.e., there is a prime p such that p | An and p ∤ Ai for all i < n. More generally, w...
متن کاملGeneralized Divisors and Biliaison
We extend the theory of generalized divisors so as to work on any scheme X satisfying the condition S2 of Serre. We define a generalized notion of Gorenstein biliaison for schemes in projective space. With this we give a new proof of the theorem of Gaeta, that standard determinantal schemes are in the Gorenstein biliaison class of a complete intersection.
متن کاملGeneralized Divisors and Reflexive Sheaves
We introduce the notions of depth and of when a local ring (or module over a local ring) is “S2”. These notions are found in most books on commutative algebra, see for example [Mat89, Section 16] or [Eis95, Section 18]. Another excellent book that is focussed on these ideas is [BH93]. We won’t be focussing on the commutative algebra, but one should be aware, at the very least, that this backgro...
متن کاملPrimitive Divisors of Quadratic Polynomial Sequences
We consider primitive divisors of terms of integer sequences defined by quadratic polynomials. Apart from some small counterexamples, when a term has a primitive divisor, that primitive divisor is unique. It seems likely that the number of terms with a primitive divisor has a natural density. We discuss two heuristic arguments to suggest a value for that density, one using recent advances made ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2016
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2015.07.024